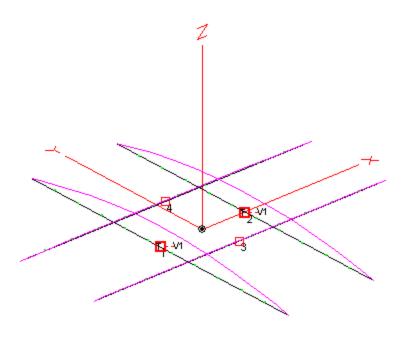

-antenna (hash)4 direction switchable array

Feasibility study

Paper on CCF & OHDXF cruise 4.1.2012

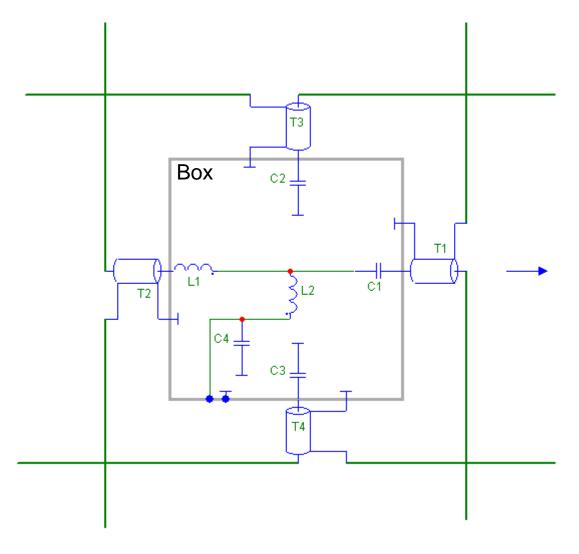
Pekka Ketonen

4 direction, instant switching

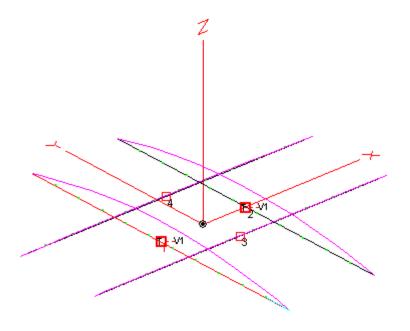


4.2.2012

Features

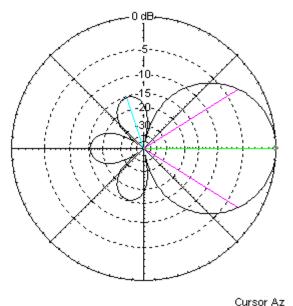

- Instant direction switching in 90 deg steps
 - Advantage in contest use on low bands
- Can be stacked 2 over 2
- 20dB F/B, 6dBi gain + ground reflection = abt 11dBi
- Angle of radiation as in yagi's, depends on height
- All element equal length
- Band can be divided into multiple segments if desired
- No need for tower rotation or separate continent specific antennas
 - Free standing towers can be used.

Concept


- 2x2 equal elements in 90 deg angle
- Vertical spacing 50cm on 7MHz band
- Opposite voltage feed of two elements, reactive loading of sideways elements
- 0.5 λ cables from all element to a phasing box
- All tuning and matching components are in the box
- Separate patterns for RX and TX possible
 - Receiving mode with better F/B but lower gain
 - Transmitting mode with high gain

How to do it

- All elements equal
- T1=T2=T3=T4 = λ /2 cable
- C1, L1 phasing components
- C2, C3 = coupling reactances
 capacitor or coil
- L2, C4 = L-match for 50 ohm
- Rotation relays not shown here


Example 40m band

- All elements 20.8m long dia 36mm
 - Free space resonance 6910kHz
 - Can be higher and then leads to different component values
- Horizontal spacing 600cm
- Vertical spacing 50cm
- All 4 cables 21.2m electrical length 3dB/100m @ 100MHz
- Current baluns in each cable
- Note: Antenna booms are assumed to be non-conductive

..Example, 2uH

Total Field

EZNEC

- C2 = C3 = 2uH (coil)
- L1 = 0.5uH, C1 = 265pF
- Includes cable loss abt 0.15dB
- F/B = 15.5dB
- Gain = 6.44dB

Azimuth Plot Elevation Angle 0.0 deg.

Outer Ring 6.44 dBi

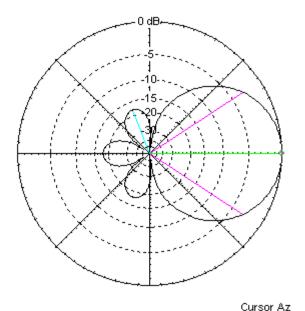
Slice Max Gain 6.44 dBi @ Az Angle = 0.0 deg.

Front/Back 15.52 dB

64.5 deg.; -3dB @ 327.7, 32.2 deg. Beamwidth Sidelobe Gain -9.01 dBi @ Az Angle = 108.0 deg.

Front/Sidelobe 15.45 dB 7.15 MHz

0.0 deg.


6.44 dBi

0.0 dBmax

Gain

..Example, 6uH

Total Field

7.15 MHz

0.0 deg.

6.27 dBi

0.0 dBmax

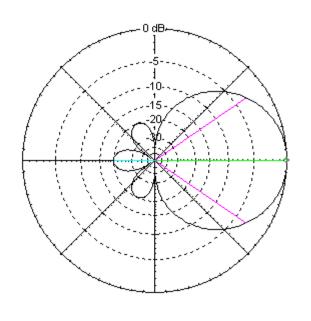
Gain

Azimuth Plot Elevation Angle 0.0 deg.

Outer Ring 6.27 dBi

Slice Max Gain 6.27 dBi @ Az Angle = 0.0 deg.

Front/Back 17.91 df


Beamwidth 66.8 deg.; -3dB @ 326.6, 33.4 deg. Sidelobe Gain -11.61 dBi @ Az Angle = 112.0 deg.

Front/Sidelobe 17.88 dB

- C2 = C3 = 6uH (coil)
- L1 = 0.55uH, C1 = 245pF
- Includes cable loss abt 0.15dB
- F/B = 17.9dB
- Gain = 6.27dB

..Example, 10pF

Total Field

EZNEC

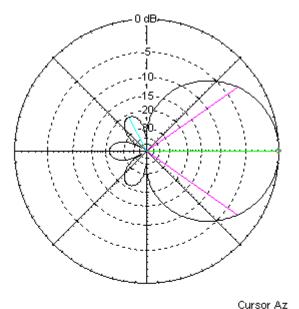
- C2 = C3 = 10pF
- L1 = 0.6uH, C1 = 235pF
- Includes cable loss abt 0.15dB
- F/B = 19.9dB
- Gain = 6.12dB

Azimuth Plot

Elevation Angle 0.0 deg. Outer Ring 6.11 dBi

Slice Max Gain 6.11 dBi @ Az Angle = 0.0 deg.

Front/Back 20.09 dB


Beamwidth 68.8 deg.; -3dB @ 325.6, 34.4 deg. Sidelobe Gain -13.98 dBi @ Az Angle = 180.0 deg.

Front/Sidelobe 20.09 dB

7.15 MHz

..Example, 47pF

Total Field

7.15 MHz

0.0 deg. 6.02 dBi

0.0 dBmax

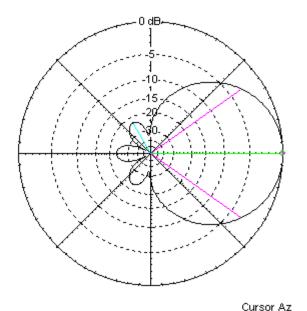
Gain

Azimuth Plot Elevation Angle 0.0 deg. Outer Ring

6.02 dBi

6.02 dBi @ Az Angle = 0.0 deg. Slice Max Gain

Front/Back 21.78 dB


69.8 deg.; -3dB @ 325.1, 34.9 deg. Beamwidth Sidelobe Gain -15.28 dBi @ Az Angle = 118.0 deg.

Front/Sidelobe 21.3 dB

- C2 = C3 = 47pF
- L1 = 0.7uH, C1 = 235pF
- Includes cable loss abt 0.15dB
- F/B = 21.8dB
- Gain 6.02dB

..Example, 82pF

7.15 MHz

0.0 deg.

5.93 dBi

0.0 dBmax

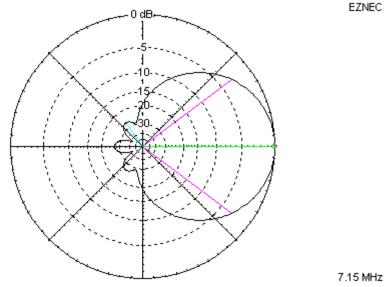
Gain

Azimuth Plot Elevation Angle 0.0 deg.

Outer Ring 5.93 dBi

Slice Max Gain 5.93 dBi @ Az Angle = 0.0 deg.

Front/Back 23.31 dB


Beamwidth 71.0 deg.; -3dB @ 324.5, 35.5 deg. Sidelobe Gain -16.72 dBi @ Az Angle = 120.0 deg.

Front/Sidelobe 22.65 dB

- C2 = C3 = 82pF
- L1 = 0.77uH, C1 = 235pF
- Includes cable loss abt 0.15dB
- F/B = 23.3dB
- Gain 5.93dB

..Example, 150pF

Total Field

0.0 deg.

5.72 dBi

0.0 dBmax

Cursor Az

Gain

Elevation Angle 0.0 deg. Outer Ring

Azimuth Plot

5.72 dBi

Slice Max Gain 5.72 dBi @ Az Angle = 0.0 deg.

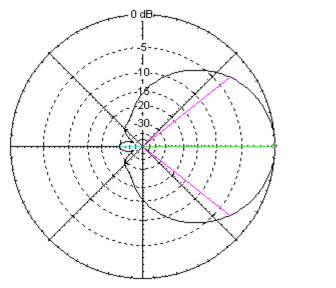
Front/Back 26,61 dB

Beamwidth 73.8 deg.; -3dB @ 323.1, 36.9 deg. Sidelobe Gain -20.34 dBi @ Az Angle = 125.0 deg.

Front/Sidelobe 26.06 dB • C2 = C3 = 150pF

L1 = 0.9uH, C1 = 235pF

Includes cable loss abt 0.15dB


F/B = 26.6dB

Gain 5.72dB

>> Corresponds Moxon performance

..Example, 200pF

Total Field

7.15 MHz

0.0 deg.

5.51 dBi

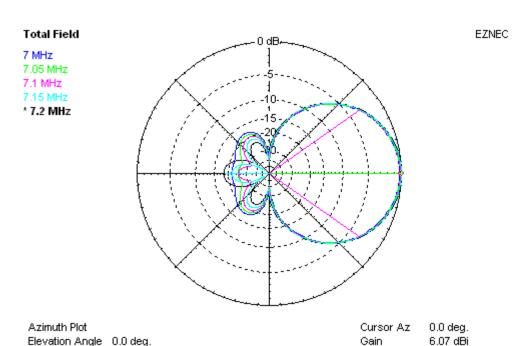
0.0 dBmax

Cursor Az

Gain

Azimuth Plot Elevation Angle 0.0 deg. Outer Ring 5.51 dBi

Slice Max Gain 5.51 dBi @ Az Angle = 0.0 deg.


Front/Back 29.91 df

Beamwidth 76.8 deg.; -3dB @ 321.6, 38.4 deg. Sidelobe Gain -24.4 dBi @ Az Angle = 180.0 deg.

Front/Sidelobe 29.91 dB

- C2 = C3 = 200pF
- L1 = 0.95u, C1 = 230pF
- Includes cable loss abt 0.15dB
- F/B = 29.9dB
- Gain 5.5dB
- >> Corresponds Moxon performance

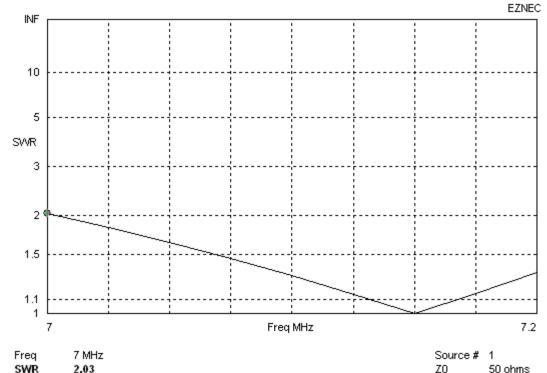
Bandwidth, 47pF

- Center frequency 7150kHz
- F/B better than 18dB @ 7000-7200kHz
- Gain variation is small
- Band segments can be added if better performance needed, for example 7050 and 7150kHz center frequencies

Slice Max Gain 6.07 dBi @ Az Angle = 0.0 deg.

6.07 dBi

Front/Back 18.32 dB


Outer Ring

Beamwidth 69.8 deg.; -3dB @ 325.1, 34.9 deg. Sidelobe Gain -12.25 dBi @ Az Angle = 180.0 deg.

Front/Sidelobe 18.32 dB

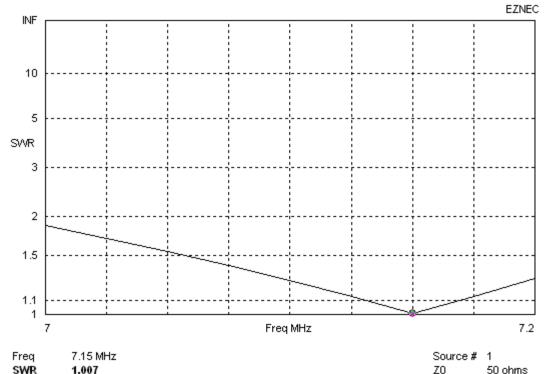
0.0 dBmax

SWR bandwidth, 10pF loading

- Center frequency 7150kHz
- Satisfactory SWR if center frequency is 7100kHz
- Band segments can be added if better performance needed, for example 7050 and 7150kHz center frequencies

 SWR
 2.03

 Z
 24.82 at -6.22 deg.

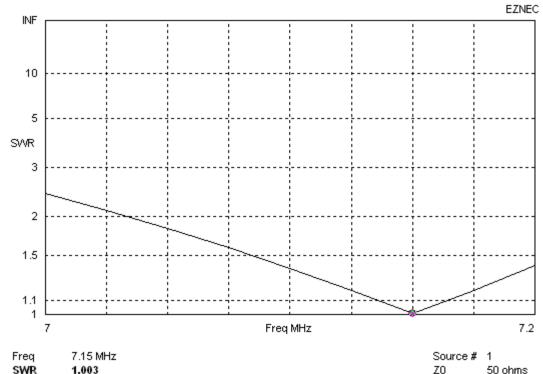

 = 24.68 - j 2.689 ohrns

 Refl Coeff
 0.3408 at -171.88 deg.

 = -0.3374 - j 0.04816

Ret Loss 9.4 dB

SWR bandwidth, 150pF loading



- Center frequency 7150kHz
- Satisfactory SWR if center frequency is 7100kHz
- SWR bandwidth I getting wider when F/B is improved by capacitive loading of the side elements

SWR 1.007 Z 49.78 at -0.3 deg. = 49.78 - j 0.2618 ohms Refl Coeff 0.003413 at -129.63 deg. = -0.002177 - j 0.002629

Ret Loss 49.3 dB

SWR bandwidth, 2uH loading

SWR 1.003

50 at 0.2 deg. = 50 + j 0.1735 ohms

Refl Coeff 0.001735 at 90.5 deg.

= -0.000015 + j 0.001735

55.2 dB Ret Loss

- Center frequency 7150kHz
- SWR bandwidth I getting more narrow when gain is added by inductive loading of the side elements
- Band segments can be added if better performance needed, for example 7050 and 7150kHz center frequencies

Conclusions

- It is feasible to build 2-element switchable array and achieve four directions with equal performance
- Performance is equal or better than with parasitic Yagi as current in reflector is increased with phased feed
 - equal current amplitudes in front and rear, better F/B
 - but losses in side-element cables lower antenna gain about 0.1dB
- It is possible to achieve radiation pattern like in Moxon antenna, more than 25dB F/B, if some 0.5 dB gain can be sacrificed
 - This feature can be used for receiving
- Currents in the side-elements can be controlled with reactive loading in the box
 - Inductive loading increases gain but reduces F/B and SWR bandwidth
 - Capacitive loading improves F/B and SWR bandwidth but lowers forward gain

Choices to be made

- The builder of # -antenna has to decide:
 - What are those 4 main headings in 90 deg steps
 - If stack of 2 antennas is chosen, dimensioning must be done for the whole package. Combining just two antennas doesn't lead to best performance
 - 1,2 or 3 frequency segments
 - More segments means more relays but a bit better performance
 - If maximal gain for transmitting is sought, multiple band segments are needed
 - Separate TX and RX positions or just one common