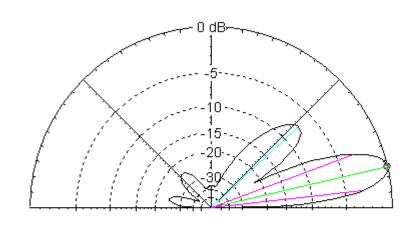


2 over 2 phased array for 40m


- upper antenna up 49m, lower ant 29m
 - vertical spacing 20m
 - full size elements
- opposite-voltages feed system
 - ½ wavelength cables from each element to phasing box
 - current baluns in all cables
 - opposite cable polarities in front and rear elements
 - all elements same length

Features

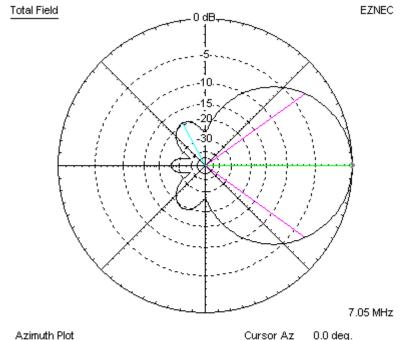
- Good F/B over the whole band
 - Equal current amplitudes in all elements
 - Low vertical side lobes in DX-position because of stacking
 - Two frequency settings, 7000-7100 and 7100-7200kHz
 - Both settings cover the whole 40m band quite well
- Wideband (less so the local position)
- Switchable take-off-angle. DX and Local
- The structure allows instant 180deg direction switching
 - even it was not implemented in the first phase.

Position 7050kHz DX, 13deg TOA

7.05 MHz

 Elevation Plot
 Cursor Elev
 13.0 deg.

 Azimuth Angle
 0.0 deg.
 Gain
 14.06 dBi


 Outer Ring
 14.06 dBi
 0.0 dBmax

Slice Max Gain 14.06 dBi @ Elev Angle = 13.0 deg.

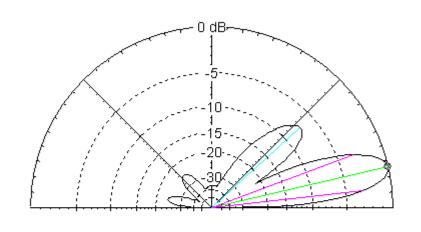
Beamwidth 14.1 deg.; -3dB @ 6.5, 20.6 deg.

Sidelobe Gain 6.83 dBi @ Elev Angle = 43.0 deg.

Front/Sidelobe 7.22 dB

Elevation Angle 13.0 deg. Outer Ring 14.06 dBi Cursor Az 0.0 deg. Gain 14.06 dBi 0.0 dBmax

Slice Max Gain 14.06 dBi @ Az Angle = 0.0 deg.


Front/Back 25.08 dB

Beamwidth 71.0 deg.; -3dB @ 324.5, 35.5 deg. Sidelobe Gain -5.08 dBi @ Az Angle = 118.0 deg.

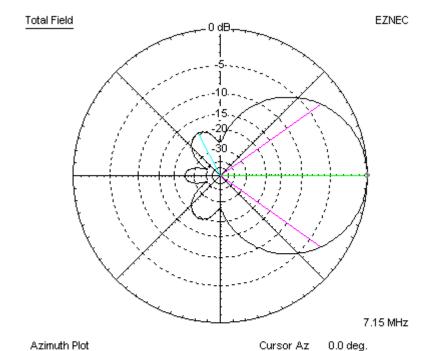
Front/Sidelobe 19.13 dB

Position 7150kHz DX, 13deg TOA

7.15 MHz

 Elevation Plot
 Cursor Elev
 13.0 deg.

 Azimuth Angle
 0.0 deg.
 Gain
 14.15 dBi


 Outer Ring
 14.15 dBi
 0.0 dBmax

 Slice Max Gain
 14.15 dBi @ Elev Angle = 13.0 deg.

 Beamwidth
 13.9 deg.; -3dB @ 6.4, 20.3 deg.

 Sidelobe Gain
 6.96 dBi @ Elev Angle = 42.0 deg.

Front/Sidelobe 7.19 dB

Gain

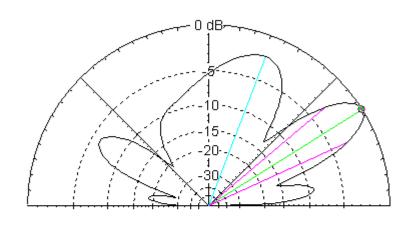
14.15 dBi

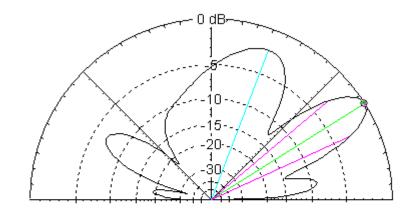
0.0 dBmax

Outer Ring 14.15 dBi

Slice Max Gain 14.15 dBi @ Az Angle = 0.0 deg.

Front/Back 24.4 dB


Elevation Angle 13.0 deg.


Beamwidth 70.8 deg.; -3dB @ 324.6, 35.4 deg. Sidelobe Gain -5.14 dBi @ Az Angle = 118.0 deg.

Front/Sidelobe 19.29 dB

Position Local, 32deg TOA 7150kHz 7050kHz

Total Field **EZNEC EZNEC** Total Field

7.05 MHz

Elevation Plot 32.0 deg. Cursor Elev Azimuth Angle 0.0 deg. Gain 11.13 dBi Outer Ring 11.13 dBi 0.0 dBmax

Slice Max Gain 11.13 dBi @ Elev Angle = 32.0 deg. Beamwidth 15.7 deg.; -3dB @ 24.6, 40.3 deg. 8.97 dBi @ Elev Angle = 69.0 deg. Sidelobe Gain Front/Sidelobe 2.17 dB

Elevation Plot

Outer Ring

Azimuth Angle

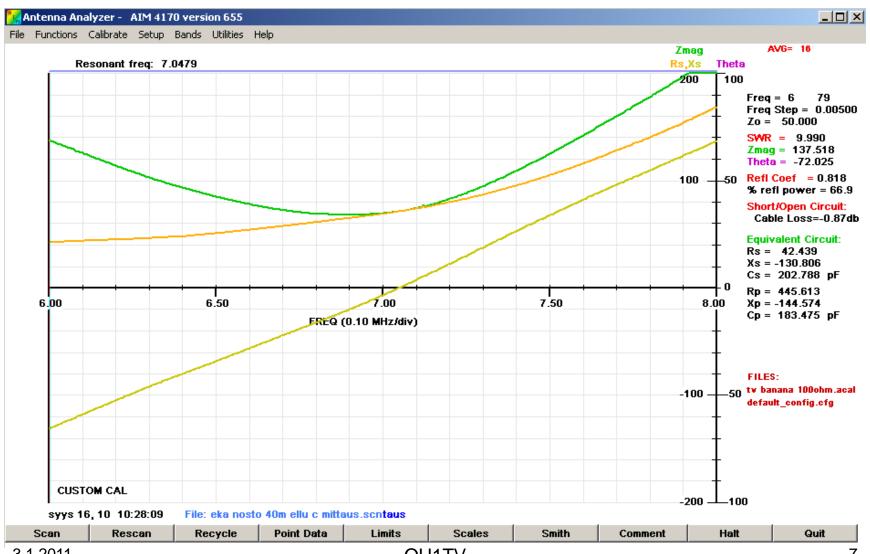
Slice Max Gain 11.19 dBi @ Elev Angle = 32.0 deg. Beamwidth 15.8 deg.; -3dB @ 24.5, 40.3 deg. 9.11 dBi @ Elev Angle = 69.0 deg. Sidelobe Gain Front/Sidelobe 2.08 dB

0.0 deq.

7.05 MHz

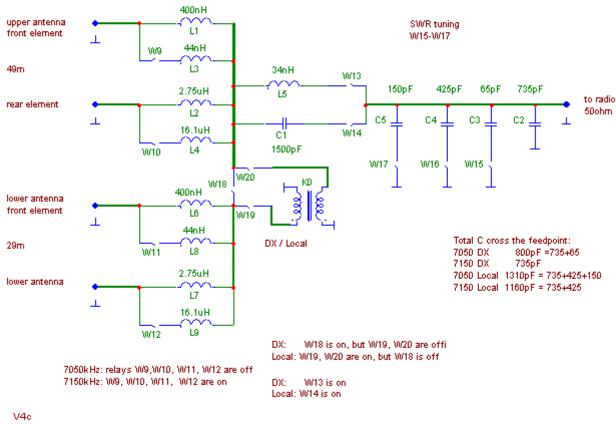
32.0 deq.

11.19 dBi


0.0 dBmax

11.19 dBi

Cursor Elev


Gain

Measured feedpoint impedance of an element alone

Phasing and switching box

- 40m 2over2 at OH1NX
- all elements tuned to resonate at 7050kHz when alone
- feedcables from box to elements are 21.28m electrical length (measured), corresponds lamda/2 on 7046.6kHz

2.1.2011 OH1TV

The team OH1TV, OH1ND, OH1TX, OH1MA, OH7RM

Happy Owner Timo OH1NX

Some comments

- Aligning the phasing unit was a bit difficult because some phasing inductances required were so small. Low inductance requirement was a result from choosing 7050kHz for the element resonance. The circuit wirering and relays easily generates 100nH inductances. In the next similar project element resonance shall be 7100kHz. This increases the required inductance values and gives more flexibility to wire the phasing box.
- 80cm long pigtail cables were used to connect coaxial cables to the box. This allowed to keep stray inductances low as cable could continue to the point.
- Vector analyzer like AIM is a must when aligning the box