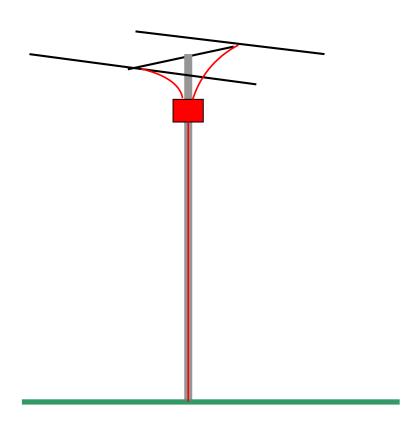
40m OVF at OH1MA

Two phased elements


Two bands on 40m

F/B 20dB over whole 7000-7200kHz band

Gain 6.5dBi

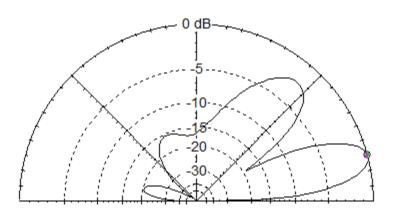
Instant direction reversal

2-el phased array for 40m at OH1MA

- Antenna up 40m
 - coil loaded elements, 81% of full size
 - coils 1.9m from the element center
- Opposite-voltage feed system
 - both elements are tuned to 7100kHz
 - ½ wavelength cables from both element to the phasing box
 - opposite cable polarities in front and rear elements
 - current balun on both cables
 - equal current amplitudes in both elements
- Band divided into two sub-bands
 - 7000-7100 and 7100-7200kHz
 - This way better performance is achieved with shortened element
- Instant 180 degree direction switching

What is Opposite Voltage Feed?

OVF is a method to feed 2-element antennas. It makes possible to adjust current amplitudes and phases so that good radiation pattern can be achieved. The main advantage is insensitivity of radiation pattern to frequency change. The concept is that equal amplitude but opposite phase voltages are brought to the element feedpoints. By selecting proper detuning of the elements and taking into account their mutual impedance, it is possible to reach equal currents and wanted phase difference of the currents. When frequency is changed, both current phases move to the same direction and their difference remains almost constant, making the radiation pattern wideband.

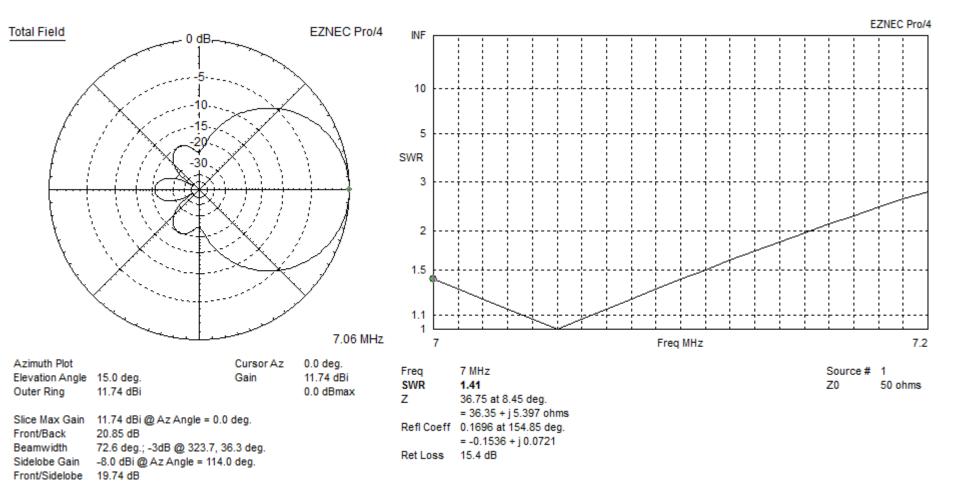

Opposite phase normally is generated with half wavelength cable. It can be achieved also with cable polarity inversion and two cables, each half wavelength long. This method is used in this case.

An approximation of phase reversal can be made using very short equal length cables and cable polarity inversion. This method is not perfectly accurate but in most cases adequate. Short cable method is not used in this case.

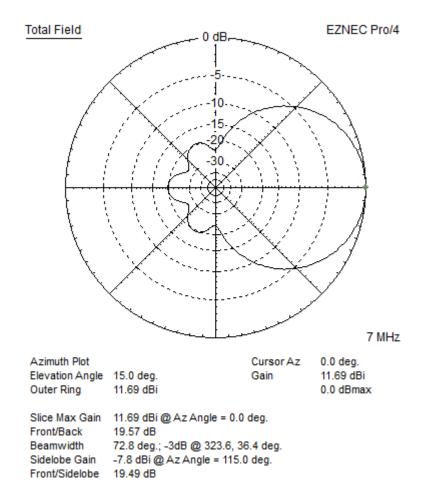
Modeled performance

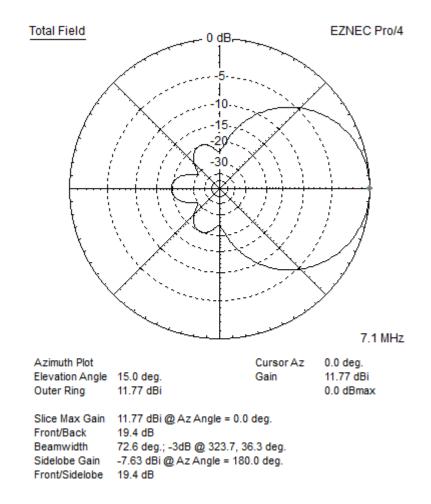
7000-7100kHz, band center

Total Field EZNEC Pro/4

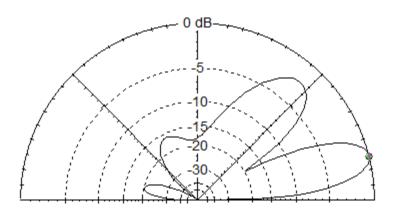

7.06 MHz

Elevation Plot		Cursor Elev	15.0 deg.
Azimuth Angle	0.0 deg.	Gain	11.74 dBi
Outer Ring	11.74 dBi		0.0 dBmax


Slice Max Gain 11.74 dBi @ Elev Angle = 15.0 deg. Beamwidth 15.4 deg.; -3dB @ 7.2, 22.6 deg. Sidelobe Gain 9.48 dBi @ Elev Angle = 49.0 deg.

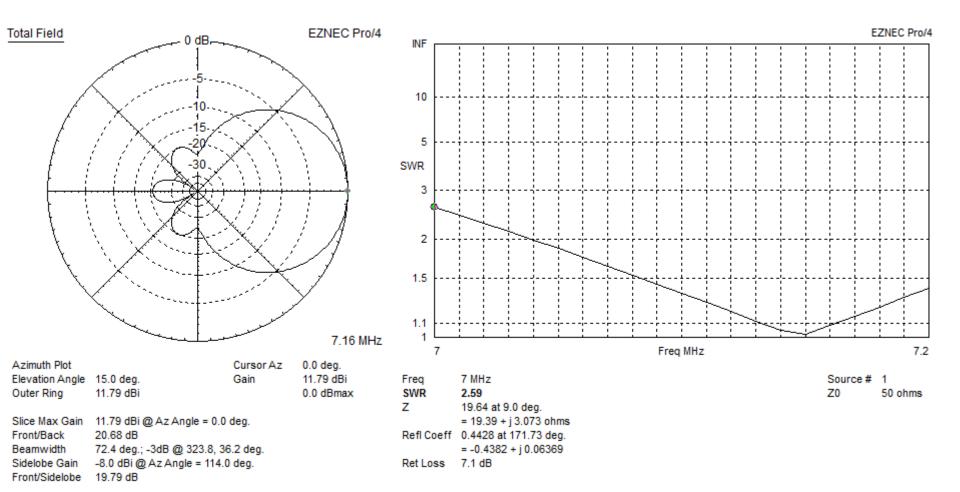

Front/Sidelobe 2.26 dB

7000-7100kHz, band center

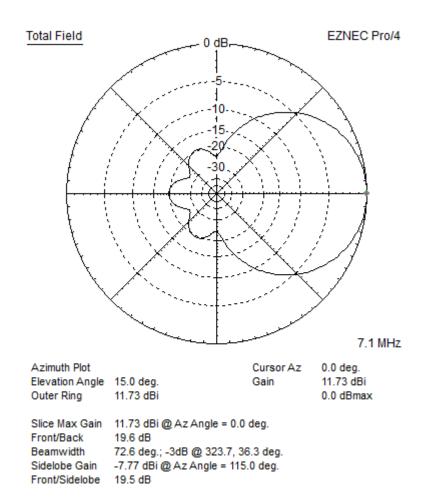

7000-7100kHz, band ends

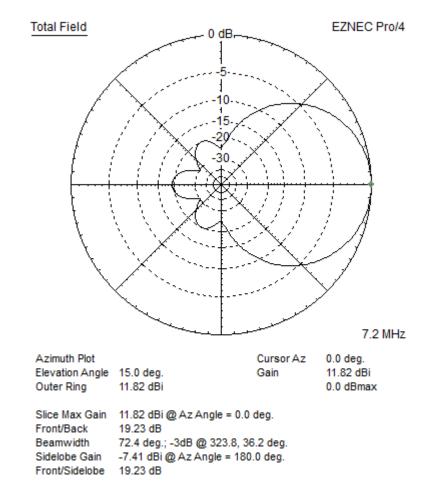
7100-7200kHz, band center

Total Field EZNEC Pro/4


7.16 MHz

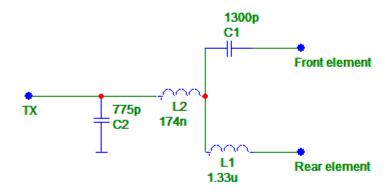
Elevation Plot		Cursor Elev	14.0 deg.
Azimuth Angle	0.0 deg.	Gain	11.79 dBi
Outer Ring	11.79 dBi		0.0 dBmax


Slice Max Gain 11.79 dBi @ Elev Angle = 14.0 deg. Beamwidth 15.2 deg.; -3dB @ 7.1, 22.3 deg. Sidelobe Gain 9.6 dBi @ Elev Angle = 49.0 deg.


Front/Sidelobe 2.19 dB

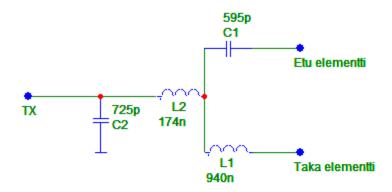
7100-7200kHz, band center

7100-7200kHz, band ends

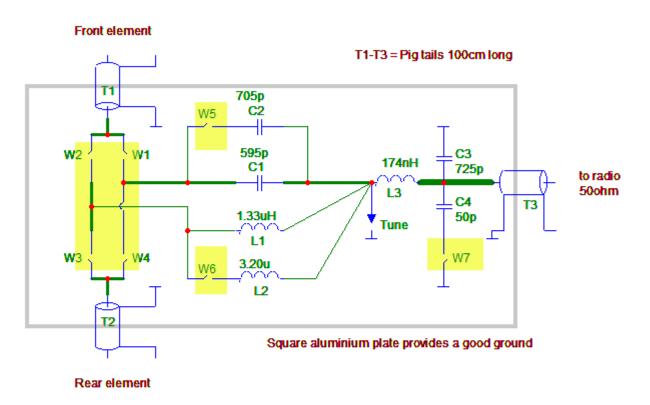


Structure

L-match and phasing for 7000-7100kHz-band


40m OVF array at OH1MA
Antenna height 40m, shortened elements 17.27m long (81%)
Elements tuned to 7100kHz
Electrical length of feed cables is 21.1m
Element spacing 6.5m
Center frequency 7060kHz
Phasing box for band 7000-7100kHz

21.9.2016 OH1TV


L-match and phasing for 7100-7200kHz-band

40m OVF array at OH1MA
Antenna height 40m, shortened elements 17.27m long (81%)
Elements tuned to 7100kHz
Electrical length of feed cables is 21.1m
Element spacing 6.5m
Center frequency 7160kHz
Phasing box for band 7100-7200kHz

21.9.2016 OH1TV

Phasing box for 2el 40m OVF array at OH1MA

on, W6 off 7060kHz W7 is on off, W6 on 7160kHz W7 is off

21.9.2016 OH1TV

How it was aligned

- Both elements were tuned to 7100kHz +/- 5kHz
 - Measurements were made at 40m, which is the installation height
 - Abt 40m long measurement cable was eliminated with calibration
 - Impedance at element terminals was measured: zero reactance on 7100kHz
- All components for the phasing box were measured before installation
 - Capacitors and coils were selected based on measurements on 7100kHz
 - Also inductance of relays and wiring were measured on 7100kHz
- Lay-out of wiring is critical as we play with small inductances
 - All stray inductances from wiring were taken into account
- Final alignment was based on serial reactance in each leg when the summing point **Tune** was grounded (left end of L3).
 - The target values were from Eznec model
- After this lab alignment no in-situ tuning was made. The box was just connected and the system was ready to go

Going up in September 2016

Participants in the project

Antenna electrical design

OH1TV

Phasing box builder

OH1MA

Final tuning

OH1MA, OH1ND, OH1TV

Elements and boom

UA2FZ

Tuning

OH1MA

Antenna assembly

OH1MA

Installation to the tower

OH1ND, OH1MA

Basket crane

Jalo & Jalo, Turku

-> The antenna works as expected.